
Extending multiple testing with unknown test
dependency via the CoCo test with applications to

cancer studies

Abstract

Multiple testing problems are ubiquitous in clinical and scientific investigations.
Central to multiple testing is to control for the type I error. The behavior of multiple
testing procedures for α-control when the tests are independent or dependent but with
a known joint distribution is relatively well known. When the joint distribution of test
statistics is unknown, one can still guarantee the α-control, if the positive dependency
through stochastic ordering (PDS) condition is satisfied. Despite the frequent occur-
rence of unknown test dependency in multiple testing and the importance of the PDS
condition in endorsing its validity, little do we know about how to verify the condition.
Here, we develop a new nonparametric statistical test, called the CoCo test, that can
validate the condition of PDS, through which one can control for α regardless of the
prior knowledge of the dependency between test statistics. Simulation studies show
that the CoCo test can faithfully detect the violation of the PDS condition or lack
thereof. To further evaluate the efficacy of the CoCo test, we apply it to investigate
two meta-analyses in oncology. An R package cocotest to implement the proposed
methodology is available at CRAN.

Keywords. Clinical trials, Concordance, Dependence test, Hazard ratio, Hochberg pro-
cedure, Multiple testing procedure.
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1 Introduction

Modern clinical trials consider multiple primary outcomes in their designs. This is because
a single primary endpoint generally only evaluates and reveals a limited dimension of the
effect of a medical intervention (Hamasaki et al., 2018). Two chief primary endpoints in
clinical trials in general, and oncology trials in particular, are the overall survival (OS) and
the progression-free survival (PFS). The individual importance of OS and PFS in clincal
trails have been extensively studied. Recent years, however, have seen an increasing interest
in investigating the association between the OS and PDF (Buyse et al., 2007; Halabi et al.,
2009; Amir et al., 2012; Adunlin et al., 2015; Gyawali et al., 2018; Hess et al., 2019; Belin
et al., 2020; Pasalic et al., 2020; Chase et al., 2023; Courtinard et al., 2023). The reasons are
twofold. First, clinicians want to determine the circumstances under which PFS can act as
a validated surrogate endpoint for OS, thus establishing the clinical efficacy of a treatment.
Second, one wants to provide a validation of the dependence assumptions underlying widely
applied multiple testing procedures in clinical trials with two or more endpoints.

While the first aforementioned reason is relatively straightforward, the second reason
perhaps needs some explanation. Consider the Hochberg procedure (Hochberg, 1988), one
of the most commonly used adjustment approaches in multiple testing to control for the
overall type I error α. When there are multiple endpoints and the tests are independent,
the Hochberg procedure provides adequate overall α control. When two or more primary
endpoints in confirmatory clinical trials are not independent, however, a common miscon-
ception about the Hochberg procedure is that it gurantees adequate overall α control when
the test statistics are positively correlated. Yet, this is only true when the distribution of the
endpoints and their correlation structure satisfies certain positive dependence assumptions
(FDA, 2022). More specifically, when there are multiple endpoints tests and the tests are
either independent or positively correlated with a known joint distribution (e.g., the test
statistics are jointly bivariate normal), the Hochberg procedure provides adequate overall
α-control (FDA, 2022). When the joint distributions of test statistics are unknown, a valid
control of overall type I error is only guaranteed if the positive dependency through stochastic
ordering (PDS) condition is satisfied (Sarkar and Chang, 1997; Sarkar, 1998; Benjamini and
Yekutieli, 2001; Sarkar, 2002).

Despite the frequent occurrence of unknown test dependency in multiple testing, and,
therefore, the cardinal importance of the PDS condition in guaranteeing the overall control
of the type I error, little do we know about how to statistically check the condition. To
address this issue, here we design a nonparametric statistical test, called the CoCo test,
based on ranked correlation coefficient and a simple, yet effective, algebraic arrangement
of the Spearman’s ρ and Kendall’s τ , to evaluate and test the PDS condition in multiple
testing problems. Operationally, we first introduce the test, and then examine and demon-
strate its efficacy using simulation studies and apply it to investigate two representative
primary endpoints (i.e., OS and PFS) in two meta-analyses with 84 cancer clinical trials.
Our exploration suggest the utility of the CoCo test in validating the PDS condition in mul-
tiple testing. With this new, simple, and general statistical tool, one may witness expanded
applications of the Hochberg procedure in a wide range of ”non-standard” cases when the
tests are either correlated under an uncommon distribution or with an unknown correlation
structure; one may also extend other multiplicity correction methods (e.g., Benjamini and
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Hochberg (1995)’s false discovery rate controlling procedure) by embedding the CoCo test
into them.

The rest of this paper is structured as follows. Section 2 outlines the PDS condition
and introduces the CoCo test to assess the PDS condition. Section 3 performs simulation
studies to investigate the performance of the CoCo test for controlling the type I error rate
and statistical power under various scenarios. Section 4 presents two case studies on 84
cancer clinical trials including 72 trials on patients with metastatic breast cancer treated
with anthracyclines, taxanes, or targeted therapies, and 12 trials on patients with advanced
solid tumors treated with programmed cell death protein 1 (PD-1) inhibitors, and examines
the association between two primary outcomes, PFS and OS, in both studies. Section 5
concludes the paper with discussions and future directions.

2 The PDS condition and the CoCo Test

In this section, we introduce the definition of the positive dependency through stochastic
ordering (PDS) condition and the methodological framework of the nonparametric CoCo
test, based on ranked correlation coefficient, to check the PDS condition.

The general PDS condition. Let us begin with a random vector W = (W1,W2, . . . ,Wm).
We say W is positively dependent through stochastic ordering (PDS) if, for any i =
1, 2, . . . ,m, the conditional expected value

E [g(W ) | Wi = w]

is non-decreasing in w, for any non-decreasing function g.
The PDS condition with two variables. A special case of the PDS condition is regard-

ing a bivariate random vector (X, Y ). More specifically, we say X and Y are PDS if:
E [g(Y ) | X = x] and E [g(X) | Y = y] are non-decreasing in x and y, respectively, for any
non-decreasing function g. This special PDS condition is also known as positive regression
dependence (Tukey, 1958; Lehmann, 1966; Shaked, 1977; Block et al., 1985).

The PDS condition with a multivariate normal distribution. Another special case of
the PDS distribution is the multivariate normal distribution with non-positive non-diagonal
elements in the precision matrix Σ−1, where Σ is the covariance matrix (Karlin and Rinott,
1980). A multivariate normal distribution may not satisfy the PDS condition when all the
elements in the covariance matrix Σ are non-negative.

The PDS condition is related to several other positive dependence structures, including
the positive quadrant dependence (PQD) and positive association dependence (PAD), but it
is more strigent. See Tong (1990), Joe (1997) and Gou (2023) for a comprehensive summary
of these positive dependence structures.

The PDS condition is critical to ensure that a multiple testing procedure provides valid
control of the type I error. Here, we use Hochberg (1988) procedure as a demonstration,
because it is a widely used multiplicity adjustment method in confirmatory clinical trials
involving multiple endpoints. One, however, can relatively straightforwardly extend our
arguments to other multiple testing procedures, including Hommel (1988)’s procedure, Ben-
jamini and Hochberg (1995)’s FDR controlling procedure, etc.
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Let us now proceed with the Hochberg procedure. Consider m hypotheses H1, . . . , Hm

and the associated p-values p1, . . . , pm. Denote the ordered p-values by p(1) ≤ · · · ≤ p(m).
The Hochberg procedure rejects H(1), . . . , H(k), where k is the largest index such that p(k) ≤
α/(m − k + 1). When test statistics are (a) independent, (b) dependent but under some
known joint distribution that satisfies some specific condition (such as joint normal with a
precision matrix where all non-diagonal elements are positive or zero), or (c) dependent with
an unknown joint distribution but the dependency satisfies the PDS condition, the Hochberg
procedure strongly controls the familywise error rate (Hochberg and Tamhane, 1987), since
it is a shortcut of the closed testing procedure (Marcus et al., 1976) using the Simes (1986)
method to test the intersection hypotheses.

Whereas (a) and (b) are clear and straightforward to verify, case (c) seems labyrinthine.
Naturally, one would ask, could we relax the PDS condition to some other (less stringent)
positive dependence assumption, such as the PDQ and PAD conditions, with known sta-
tistical properties? The short answer is no. More concretedly, Gou and Tamhane (2018)
and Gou (2023) showed that the PDS condition may not be relaxed to some other positive
dependence assumptions. In other words, a more relaxed positively correlated test statistics
may not guarantee the validity of the Hochberg procedure.

The key objective of this paper, therefore, aims to design a test that can guarantee
strong familywise error rate control during a multiple testing correction procedure, such
as the Hochberg procedure, when simply studying positive correlation coefficients between
test statistics do not guarantee the desired α-control that is the strong familywise error
rate control. To solve this, we draw insights from nonparemetric statistics and particularly
the ranked correlation coefficients (CoCo). Before introducing the CoCo test, let us first
review the sample correlation coefficients and measures of variability, including Pearson’s r,
Spearman’s ρ, and Kendall’s τ (Spearman, 1904; Kendall, 1938, 1945). Although their forms
are well-known, presenting them side-by-side would help to peek into the construction of the
CoCo test, a simple, yet effective, algebraic combination of the Spearman’s ρ and Kendall’s
τ .

Pearson’s r. For a sample of n data pairs {Xi, Yi}ni=1 that are independent and identically
distributed, the sample Pearson correlation coefficient is:

r̂ =

∑n
i=1(Xi −X)(Yi − Y )√∑n

i=1(Xi −X)2
√∑n

i=1(Yi − Y )2

where X and Y are the sample means.
Spearman’s ρ. The sample Spearman’s ρ is defined as the sample Pearson’s r between

the rank variables and can be computed using the formula

ρ̂ = 1− 6
∑n

i=1(R(Xi)−R(Yi))
2

(n− 1)n(n+ 1)

where R(Xi) is the rank of Xi among {X1, . . . , Xn}, and analogously for R(Yi).
Kendall’s τ . The sample Kendall’s τ considers the numbers of concordant pairs and

discordant pairs and is computed as

τ̂ =

∑
i 6=j sign(Xi −Xj) · sign(Yi − Yj)

n(n− 1)
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where sign() stands for the signum function.
Prerequisite of the CoCo test. Spearman’s ρ and Kendall’s τ are nonparametric, meaning

they are invariant under monotonic transformations. This invariant property makes them
well-suited for constructing the CoCo tests. For positive ρ and τ , Daniels (1950) and Durbin
and Stuart (1951) showed that they are constrained by the inequality

1−
√

2(1− ρ) ≤ τ ≤ 1 + 2ρ

3
, (1)

as shown in Figure 1 by the dashed boundaries. When test statistics satisfy the PDS condi-
tion, Capéraà and Genest (1993) further showed that

max
{ρ

3
, 1−

√
2(1− ρ)

}
≤ τ ≤ ρ. (2)

To find the bounds, Hutchinson and Lai (1990) and Hürlimann (2003) suggested a narrower
region of possible values of ρ and τ when the PDS condition is satisfied:

1−
√

1− ρ ≤ τ ≤ ρ2 + 2ρ

3
, (3)

as shown in Figure 1 by the solid boundaries. For the aforementioned special case involv-
ing two normally distributed variables, assuming a bivariate normal distribution, Moran
(1948) showed that Spearman’s ρ = 6

π
arcsin r

2
, and Esscher (1924) found that Kendall’s

τ = 2
π

arcsin r, where r is the bivariate normal correlation coefficient. Under the normality
assumption, the relation between Spearman’s ρ and Kendall’s τ is

τ =
2

π
arcsin

(
2 sin

πρ

6

)
. (4)

as shown in Figure 1 by the dash-dotted line. When test statistics follow a bivariate normal
distribution with positive r, we have τ ≤ ρ, and the equality holds only when ρ = τ = 0 and

ρ = τ = ±1, since dτ
dρ

= 2
3

√
1−r2/4
1−r2 is monotonically increasing on ρ ∈ [0, 1].

The CoCo test. Using the lower boundary and the upper boundary on τ in terms of
ρ, we have the type I and type II test statistics based on the estimated Spearman’s ρ and
Kendall’s τ , which are

C1 =
(1− τ̂)2

1− ρ̂
and

C2 =
1 + 3τ̂

(1 + ρ̂)2
.

We call them CoCo–1 (C1) statistic and CoCo–2 (C2) statistic, respectively. Under the null
hypothesis where the PDS condition holds, both C1 and C2 statistics are less than or equal
to one.

Formally, the corresponding CoCo hypothesis tests are presented in Eqs. (5) and (6).

CoCo–1 test : H0 :
(1− τ)2

1− ρ
≤ 1 versus Ha :

(1− τ)2

1− ρ
> 1 (5)
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ρ

τ

τ =
1+2ρ

3

τ = 1 −
√

2(1 − ρ)

τ =
ρ2+2ρ

3

τ = 1 −
√

1 − ρ

Figure 1: Boundaries of Kendall’s τ vis-à-vis Spearman’s ρ. The figure contains two bounded
regions and one line: the region corresponding to the “no dependence condition” (i.e., the
area between two dashed lines), the region corresponding to the “PDS condition” (i.e., the
area between two solid lines), and the line corresponding to the bivariate normal distribution
(i.e., the dash-dotted line).
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CoCo–2 test : H0 :
1 + 3τ

(1 + ρ)2
≤ 1 versus Ha :

1 + 3τ

(1 + ρ)2
> 1 (6)

The test statistics of the CoCo test are constructed based on the boundaries in Eq. (3).
One can test the null hypotheses in Eqs. (5) and (6) by computing the one-sided confidence

intervals of C1 statistic (1−τ̂)2
1−ρ̂ and C2 statistic 1+3τ̂

(1+ρ̂)2
using bootstrap. Here we apply the

bias-corrected and accelerated bootstrap confidence intervals (Efron, 1987), since it provides
accurate results across a wide range of settings and is second-order accurate (Hesterberg,
2015).

3 Simulation Studies

After presenting the foundation, construction, and intuition of the CoCo test, here we per-
form simulation studies to investigate how the proposed test controls the type I error and
how it affects the results of statistical power analysis.

Following the logic in Section 2, we consider, without loss of generality, a simulation
study for evaluating type I error control where the underlying true distribution is bivariate
normal, since a bivariate normal distribution with positive correlation coefficient r satisfies
the PDS condition.

Assuming the normality, given Pearson’s correlation coefficient r, one can compute Spear-
man’s ρ and Kendall’s τ as:

ρ =
6

π
arcsin

(r
2

)
and τ =

2

π
arcsin (r) . (7)

We simulate bivariate normally distributed random numbers (x1, y1), . . . , (xn, yn) assum-
ing the correlation coefficient r = 0.2, 0.5 and 0.8, and various sample sizes: n = 6, 8 and 10.
For each sample within these scenarios, we test the hypotheses in Eqs. (5) and (6) at level
α = 5% based on the bootstrap one-sided confidence intervals. One rejects the corresponding
hypothesis and concludes the violation of the PDS condition, if the confidence interval does
not include C1 = 1 or C2 = 1.

We replicate the simulation 3 × 104 times and report, in Table 1, the simulated type
I errors using the C1 and C2 tests, along with the true ρ, τ , C1, and C2 values, where

C1 = (1−τ)2
1−ρ and C2 = 1+3τ

(1+ρ)2
. Our result suggests that the simulated type I error rates of

the C1 and C2 tests are smaller than the nominal significance level α = 5%, since the true
C1 and C2 values are less than the boundary value 1 for the PDS condition. Another way
to see this is via the dissimilarity plot (the difference between τ and ρ) in Figure 1, where
the bivariate normal line lies between the two boundaries of PDS distributions.

Next, we evaluate the statistics power using a distribution that does not satisfy the PDS
condition. Specifically, consider a bivariate random variable (X, Y ) with joint cumulative
distribution function:

F (x, y) = min

{
x, y,

x2 + y2

2

}
, (x, y) ∈ [0, 1]2.
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Table 1: Simulated type I error rate of the CoCo tests (α = 5%)

r ρ τ true C1 true C2 n Type I error of C1 Type I error of C2

r = 0.2 0.191 0.128 0.940 0.976
6 0.39% 1.50%
8 0.32% 0.26%
10 0.10% 0.07%

r = 0.5 0.483 0.333 0.859 0.910
6 0.42% 1.43%
8 0.26% 0.19%
10 0.19% 0.07%

r = 0.8 0.786 0.590 0.784 0.869
6 0.34% 1.55%
8 0.23% 0.21%
10 0.15% 0.07%

It follows that (X, Y ) meets the positive quadrant dependence (PQD) condition - a weaker
positive dependence condition than the PDS condition, but does not satisfy the PDS condi-
tion (Nelsen, 2006). Using this distribution, we simulate random numbers (x1, y1), . . . , (xn, yn)
with varying sample sizes of n = 6, 8, 10, 15, 20, 30 and 50. We reject the null hypothesis
that the PDS condition holds, if the bootstrap confidence intervals do not contain C1 = 1
or C2 = 1, where the significance level α = 5%.

Again, we replicate this simulation 3 × 104 times, and includes, in Table 2, power from
the simulated data with corresponding true ρ, τ , C1 and C2 values. Since the true C1
value is less than 1 and the true C2 value is greater than 1, the bivariate distribution of
(X, Y ) only violates the null hypothesis of the C2 test in Eq. (6). Therefore, we only report
the simulated probability of rejecting the null hypothesis of the C2 test, which represents
the probability of the C2 test favoring the alternative hypothesis. The simulation results
suggest the effectiveness of the CoCo test: even with a moderate sample size, the test has a
reasonable statistical power to detect the violation of PDS condition.

Table 2: Simulated statistical power of the PDS tests (α = 5%)

ρ τ true C1 true C2 Sample size n Power of C2 test

0.288 0.333 0.624 1.206

6 50.0%
8 37.4%
10 37.2%
15 45.1%
20 54.9%
30 71.4%
50 90.4%
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4 Application

After verifying the performance of the CoCo test using simulation studies, we apply it to
investigate the association between the overall survival (OS) and the progression-free sur-
vival (PFS) in two trial-level meta-analyses on cancer. Specifically, the first study is a
meta-analysis of 72 clinical trials between 1990 and 2015 on patients with metastatic breast
cancer (MBC) treated with anthracyclines, taxanes, or targeted therapies (Adunlin et al.,
2015). The second study is a meta-analysis of 12 trials between 2015 and 2017 on patients
with advanced solid tumors treated with programmed cell death 1 (PD-1) inhibitors (e.g.,
nivolumab and pembrolizumab) (Gyawali et al., 2018). Figure 2 shows the relations between
the log hazard ratios for OS and PFS in these two meta-analyses.

−0.4 −0.2 0.0 0.2 0.4 0.6

−
1.

0
−

0.
5

0.
0

0.
5

log (HR for OS)

lo
g 

(H
R

 fo
r 

P
F

S
)

Adunlin et al. 2015

−0.8 −0.6 −0.4 −0.2 0.0

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

log (HR for OS)

lo
g 

(H
R

 fo
r 

P
F

S
)

Gyawali et al. 2018

Figure 2: Log hazard ratios for OS and PFS from Adunlin et al. (2015) (left panel) and
Gyawali et al. (2018) (right panel).

Study one. In the 72 trials on patients with metastatic breast cancer who underwent treat-
ment of with anthracyclines, taxanes, or targeted therapies (Adunlin et al., 2015), Kendall’s
τ between PFS and OS is τ̂ = 0.344 with a 95% confidence interval τ ∈ (0.183, 0.492),
and Spearman’s ρ between PFS and OS is ρ̂ = 0.462 with a 95% confidence interval
ρ ∈ (0.241, 0.682).

To determine whether a CoCo test is needed, we first assess the normality of the log
hazard ratios for OS and PFS. The Anderson-Darling test for marginal normality gives p-
values p = 0.910 for PFS and p = 0.148 for OS (Anderson and Darling, 1952). Next, we
check whether the relation between the log hazard ratios for OS and PFS follows a bivariate
normal distribution. The Henze-Zirkler test for multivariate normality indicates that it does
not, with a p-value of p = 0.0274 (Henze and Zirkler, 1990). Since the bivariate normality
seems not to hold, a simple test of correlation alone is insufficient to verify the satisfaction
of the PDS condition.
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Now we invoke the two CoCo tests to evaluate whether the PDS condition is met. The
CoCo–1 test yields a test statistic C1 = 0.7984 and the corresponding 95% one-sided confi-
dence interval is C1 > 0.7160. The p-value to reject the null hypothesis in Eq. (5) is greater
than 0.999. The CoCo–2 test results in a test statistic C2 = 0.9517 and the 95% one-sided
confidence interval is C2 > 0.8979. The p-value to reject the null hypothesis in Eq. (6) is
0.887. Taken together, both tests suggest a valid PDS relationship between PFS and OS.

Study two. In the 12 trials on patients with advance solid cancer treated with PD-1
inhibitors (Gyawali et al., 2018), Kendall’s τ between PFS and OS is 0.469 with a 95%
confidence interval τ ∈ (−0.145, 0.902), and Spearman’s ρ is 0.593 with a 95% confidence
interval ρ ∈ (0.028, 0.870). Similarly, we conduct normality tests to see if a simple correlation
test is sufficient to verify the PDS condition. Considering the the log hazard ratios for
OS and PFS, the Anderson-Darling test for marginal normality gives p = 0.081 for PFS
and p = 0.342 for OS, and the Henze-Zirkler test rejects the multivariate normality with
p = 0.0233. Therefore, we need to apply the CoCo tests to evaluate the PDS condition.
The CoCo–1 test gives a test statistic C1 = 0.6926, with a 95% one-sided confidence interval
C1 > 0.3574 and p-value 0.856. The CoCo–2 test outputs a test statistic C2 = 0.9488, with
a 95% one-sided confidence interval is C2 > 0.7761 and the p-value is 0.881. Together, both
tests indicate a valid PDS relationship between PFS and OS.

5 Discussion

Assessing the conditions underpining the hypothesis testing is chief in guaranteeing the
validity of the test. In multiple testing, when the dependency between tests are unknown,
ensuring the satisfaction of the PDS condition is not only important for providing a suitable
overall Type I error protection, but also, via the protection, for ensuring that the appraisal
of multiple endpoints, and hence the evaluation of the drugs, is valid. In fact, in clinical
studies, the PDS condition needs to be satisfied to demonstrate a strong familywise error
rate control in many commonly used multiple testing procedures including the Hochberg
(1988) procedure, the Hommel (1988) procedure, and the Benjamini and Hochberg (1995)
false discovery rate (FDR) procedure.

In this paper, we develop a nonparametric statistical test, called the CoCo test, based
on ranked correlation coefficients, to judge the validity of the PDS condition. While the
CoCo test can be used when the tests are independent or dependent with a known standard
joint distribution, it is especially useful when the multivariate distribution of test statistics
is unknown or unclear. For example, consider the overall survival (OS) and progression-free
survival (PFS) as the two endpoints measured in an oncology study. The log hazard ratios
of OS and PFS are both normally distributed. As the joint distribution of OS and PFS is
undetermined, the parametric statistical methods based on multivariate normal distribution
may not be suitable. In this case, the CoCo test leverages the the nonparametric concordance
measures of Spearman’s ρ and Kendall’s τ in Eqs. (5) and (6) and, via their simple, but
effective, algebraic reformulation, can evaluate the PDS condition and may help addressing
the concerns regarding the Hochberg procedure from the FDA (FDA, 2022).

One can extend the Cloe test to more generalized territories by utilizing Spearman’s ρ,
Kendall’s τ , and other nonparametric concordance measures to evaluate various assumptions
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of distribution. For example, under the normal assumption, using the relation that Pearson’s
correlation r = 2 sin(πρ/6) = sin(πτ/2), we construct a multivariate normality test:

CoCo multivariate normality test: H0 :
sin(πτ/2)

2 sin(πρ/6)
= 1 versus Ha :

sin(πτ/2)

2 sin(πρ/6)
6= 1

where the decision of rejection can be made based on the bootstrap confidence interval. In
addition, we can compute the sample variance of sin(πτ/2)

2 sin(πρ/6)
via the delta method, using the

variance estimation of Kendall’s τ (Esscher, 1924), that of Spearman’s ρ (Fieller et al., 1957;
David and Mallows, 1961; Borkowf, 1999), and the covariance estimation between ρ and
τ (David et al., 1951; Xu et al., 2013). Here, the CoCo multivariate normality test only
evaluates whether the dependence structure is multivariate normal or not. If a complete test
of multivariate normality is needed, we can combine the CoCo multivariate normality test
with some univariate normality tests (Anderson and Darling, 1952; Shapiro and Wilk, 1965;
Jarque and Bera, 1980) for the marginal distributions. The validity of this combined test
is guaranteed by Sklar’s theorem, since a copula describing the dependence structure and
univariate marginal distribution functions can be fused to create any multivariate distribution
(Sklar, 1959).
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Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de
l’Institut de statistique de l’Université de Paris 8, 229–231.
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